Search results for "Salinity gradient heat engine"
showing 4 items of 4 documents
CLOSING THE LOOP: STUDY OF INTEGRATED CYCLES WITH NATURAL AND ARTIFICIAL SOLUTIONS FOR THE PRODUCTION OF ENERGY, MINERALS AND FRESH WATER
Reverse electrodialysis – Multi effect distillation heat engine fed by lithium chloride solutions
2019
Salinity Gradient Heat Engines (SG-HEs) have been proposed as a promising technology for converting low-temperature heat into electricity. The SG-HE includes two different processes: (i) a salinity gradient process where the salinity gradient between two solutions is converted into electricity and (ii) a thermal regeneration process where low-grade heat (T<100°C) is used to re-establish the original salinity gradient of the two streams. Among the proposed working solutions, aqueous solution of lithium chloride has been identified as one of the most promising thanks to its remarkable solubility and activity. In this work, a process model to study the performance of a SG-HE constituted by …
REVERSE ELECTRODIALYSIS HEAT ENGINE: Low-grade Waste Heat into Electricity
Our society is undergoing a progressive change about the life style and habits. The world population is continuously increasing with 7.6 billion of human beings in 2018, resulting in an increasingly demand of resources in terms of food, water and energy. The exploitation of the planet resources since the first Industrial Revolution, results today in an unsustainable condition, which requires fundamental changes. In particular, in the energy sector the adoption of fossil fuels as the main energy source for human beings’ activities resulted in a strong impact on our planet, leading to climate changes and environmental pollution. Nowadays these aspects have induced society to a substantial cha…
Thermolytic reverse electrodialysis heat engine: model development, integration and performance analysis
2019
Abstract Salinity gradient heat engines represent an innovative and promising way to convert low-grade heat into electricity by employing salinity gradient technology in a closed-loop configuration. Among the aqueous solutions which can be used as working fluid, ammonium bicarbonate-water solutions appear very promising due to their capability to decompose at low temperature. In this work, an experimentally validated model for a reverse electrodialysis heat engine fed with ammonium bicarbonate-water solutions was developed. The model consists of two validated sub-models purposely integrated, one for the reverse electrodialysis unit and the other for the stripping/absorption regeneration uni…